Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Nature ; 619(7971): 788-792, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37468625

RESUMO

Ecological interactions are one of the main forces that sustain Earth's biodiversity. A major challenge for studies of ecology and evolution is to determine how these interactions affect the fitness of species when we expand from studying isolated, pairwise interactions to include networks of interacting species1-4. In networks, chains of effects caused by a range of species have an indirect effect on other species they do not interact with directly, potentially affecting the fitness outcomes of a variety of ecological interactions (such as mutualism)5-7. Here we apply analytical techniques and numerical simulations to 186 empirical mutualistic networks and show how both direct and indirect effects alter the fitness of species coevolving in these networks. Although the fitness of species usually increased with the number of mutualistic partners, most of the fitness variation across species was driven by indirect effects. We found that these indirect effects prevent coevolving species from adapting to their mutualistic partners and to other sources of selection pressure in the environment, thereby decreasing their fitness. Such decreases are distributed in a predictable way within networks: peripheral species receive more indirect effects and experience higher reductions in fitness than central species. This topological effect was also evident when we analysed an empirical study of an invasion of pollination networks by honeybees. As honeybees became integrated as a central species within networks, they increased the contribution of indirect effects on several other species, reducing their fitness. Our study shows how and why indirect effects can govern the adaptive landscape of species-rich mutualistic assemblages.


Assuntos
Biodiversidade , Evolução Biológica , Aptidão Genética , Simbiose , Animais , Polinização , Simbiose/fisiologia , Abelhas/fisiologia
2.
Ecol Lett ; 23(12): 1789-1799, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32969577

RESUMO

Ecological interactions shape the evolution of multiple species traits in populations. These traits are often linked to each other through genetic correlations, affecting how each trait evolves through selection imposed by interacting partners. Here, we integrate quantitative genetics, coevolutionary theory and network science to explore how trait correlations affect the coevolution of mutualistic species not only in pairs of species but also in species-rich networks across space. We show that genetic correlations may determine the pace of coevolutionary change, affect species abundances and fuel divergence among populations of the same species. However, this trait divergence promoted by genetic correlations is partially buffered by the nested structure of species-rich mutualisms. Our study, therefore, highlights how coevolution and its ecological consequences may result from conflicting processes at different levels of organisation, ranging from genes to communities.


Assuntos
Evolução Biológica , Simbiose , Fenótipo
3.
Preprint em Português | SciELO Preprints | ID: pps-381

RESUMO

This is the first report by the COVID19 Observatory - Group: Contagion Networks analyzing mortality data from the city of São Paulo. In this report, we integrated mortality data for the city of São Paulo between 04/02/2020 and 04/28/2020, with information on the flow of victims between hospitals and cemeteries/crematoriums. We included in our analyzes both confirmed and suspected deaths from COVID-19. The main objectives of this report were: (1) to describe the structure of the flow of victims between locations and (2) to suggest changes in the current flow based on geographical distances in order to avoid a potential overload of the mortuary system. We suggest that the city of São Paulo should plan for a potential overload of the mortuary system (that is, the number of burials), based on the presented results. Thus, our results reinforce the need to adopt specific planning for the management of the extraordinary number of victims of this pandemic. Our predictions are based on the structural analysis of the COVID-19 victim flow network, which shows several hotspots with high vulnerability to system overload. These hotspots concentrate with either the greatest number of deaths (hospital) or of burials (cemetery or crematorium), and therefore have high potential to become overwhelmed by receiving many bodies due to the increase in victims of the pandemic. We recommend special attention to be given to localities on the east side of São Paulo, which has both the most vulnerable hospitals in the city, and also houses cemeteries and crematoriums that have a central role in the network and / or are vulnerable. Based on our optimization analysis, we suggest logistical changes in the current flow of bodies from hospitals to cemeteries/crematoriums so as not to overload the funeral system and minimize transportation costs. In this sense, our results are potentially useful for improving the operational planning of the Municipality of São Paulo, ratifying or rectifying actions underway at the municipal level.


Este é o primeiro relatório do Observatório COVID19 - Grupo: Redes de Contágio analisando os dados de óbitos da cidade de São Paulo. Neste relatório, integramos os dados de óbitos da cidade de São Paulo entre os dias 02/04/2020 e 28/04/2020 com informações sobre o fluxo de vítimas entre os hospitais e os cemitérios e crematórios da cidade de São Paulo. Incluímos em nossas análises óbitos confirmados e óbitos suspeitos de COVID-19. Os principais objetivos deste relatório são: (1) descrever a estrutura do fluxo de vítimas entre localidades e (2) sugerir mudanças no fluxo com base em distâncias geográficas de maneira a evitar uma potencial sobrecarga do sistema funerário. Sugere-se à prefeitura da cidade de São Paulo que seja realizado um planejamento para uma potencial sobrecarga do sistema funerário (isto é, número de sepultamentos) da cidade de São Paulo com base nos resultados apresentados. Desta forma, nossos resultados reforçam a necessidade de ser adotado planejamento específico para a gestão dos casos extraordinários visualizados no contexto da pandemia. Esta previsão está baseada na análise estrutural da rede de fluxos de vítimas da COVID-19, que indica a concentração de vários locais com alta vulnerabilidade à sobrecarga do sistema. Tais locais concentram a maior quantidade de óbitos (hospitais) ou a maior concentração de sepultamentos (cemitérios ou crematórios) e tem portanto alto potencial de tornarem-se sobrecarregados por receberem muitos corpos devido ao aumento de vítimas da pandemia. Recomenda-se especial atenção à localidades da zona leste de São Paulo, que apresenta os hospitais mais vulneráveis da cidade e abriga cemitérios e crematórios que possuem papel central na rede e/ou encontram-se vulneráveis. Com base em nossa análise de otimização, sugerimos mudanças logísticas no atual fluxo de corpos de hospitais para cemitérios/crematórios de modo a não sobrecarregar o sistema funerário e minimizar os custos de transporte. Neste sentido, nossos resultados são potencialmente úteis ao aperfeiçoamento do planejamento operacional da Prefeitura Municipal de São Paulo, ratificando ou retificando ações em curso no âmbito municipal.

4.
Proc Biol Sci ; 286(1908): 20191114, 2019 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-31409249

RESUMO

Wildlife disease dynamics are strongly influenced by the structure of host communities and their symbiotic microbiota. Conspicuous amphibian declines associated with the waterborne fungal pathogen Batrachochytrium dendrobatidis (Bd) have been observed in aquatic-breeding frogs globally. However, less attention has been given to cryptic terrestrial-breeding amphibians that have also been declining in tropical regions. By experimentally manipulating multiple tropical amphibian assemblages harbouring natural microbial communities, we tested whether Bd spillover from naturally infected aquatic-breeding frogs could lead to Bd amplification and mortality in our focal terrestrial-breeding host: the pumpkin toadlet Brachycephalus pitanga. We also tested whether the strength of spillover could vary depending on skin bacterial transmission within host assemblages. Terrestrial-breeding toadlets acquired lethal spillover infections from neighbouring aquatic hosts and experienced dramatic but generally non-protective shifts in skin bacterial composition primarily attributable to their Bd infections. By contrast, aquatic-breeding amphibians maintained mild Bd infections and higher survival, with shifts in bacterial microbiomes that were unrelated to Bd infections. Our results indicate that Bd spillover from even mildly infected aquatic-breeding hosts may lead to dysbiosis and mortality in terrestrial-breeding species, underscoring the need to further investigate recent population declines of terrestrial-breeding amphibians in the tropics.


Assuntos
Anuros/microbiologia , Quitridiomicetos/fisiologia , Longevidade , Microbiota , Micoses/veterinária , Animais , Brasil , Micoses/microbiologia , Pele/microbiologia
5.
Front Genet ; 10: 1344, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32010196

RESUMO

Studies in microbiology have long been mostly restricted to small spatial scales. However, recent technological advances, such as new sequencing methodologies, have ushered an era of large-scale sequencing of environmental DNA data from multiple biomes worldwide. These global datasets can now be used to explore long standing questions of microbial ecology. New methodological approaches and concepts are being developed to study such large-scale patterns in microbial communities, resulting in new perspectives that represent a significant advances for both microbiology and macroecology. Here, we identify and review important conceptual, computational, and methodological challenges and opportunities in microbial macroecology. Specifically, we discuss the challenges of handling and analyzing large amounts of microbiome data to understand taxa distribution and co-occurrence patterns. We also discuss approaches for modeling microbial communities based on environmental data, including information on biological interactions to make full use of available Big Data. Finally, we summarize the methods presented in a general approach aimed to aid microbiologists in addressing fundamental questions in microbial macroecology, including classical propositions (such as "everything is everywhere, but the environment selects") as well as applied ecological problems, such as those posed by human induced global environmental changes.

6.
Sci Rep ; 7(1): 11076, 2017 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-28894101

RESUMO

The family Phyllostomidae, which evolved in the New World during the last 30 million years, represents one of the largest and most morphologically diverse mammal families. Due to its uniquely diverse functional morphology, the phyllostomid skull is presumed to have evolved under strong directional selection; however, quantitative estimation of the strength of selection in this extraordinary lineage has not been reported. Here, we used comparative quantitative genetics approaches to elucidate the processes that drove cranial evolution in phyllostomids. We also quantified the strength of selection and explored its association with dietary transitions and specialization along the phyllostomid phylogeny. Our results suggest that natural selection was the evolutionary process responsible for cranial diversification in phyllostomid bats. Remarkably, the strongest selection in the phyllostomid phylogeny was associated with dietary specialization and the origination of novel feeding habits, suggesting that the adaptive diversification of phyllostomid bats was triggered by ecological opportunities. These findings are consistent with Simpson's quantum evolutionary model of transitions between adaptive zones. The multivariate analyses used in this study provides a powerful tool for understanding the role of evolutionary processes in shaping phenotypic diversity in any group on both micro- and macroevolutionary scales.


Assuntos
Evolução Biológica , Quirópteros , Radiação , Seleção Genética , Animais , Biodiversidade , Quirópteros/anatomia & histologia , Quirópteros/classificação , Análise por Conglomerados , Meio Ambiente
7.
Evolution ; 71(3): 595-609, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27917480

RESUMO

The importance of the environment in shaping phenotypic evolution lies at the core of evolutionary biology. Chipmunks of the genus Tamias (subgenus Neotamias) are part of a very recent radiation, occupying a wide range of environments with marked niche partitioning among species. One open question is if and how those differences in environments affected phenotypic evolution in this lineage. Herein we examine the relative importance of genetic drift versus natural selection in the origin of cranial diversity exhibited by clade members. We also explore the degree to which variation in potential selective agents (environmental variables) are correlated with the patterns of morphological variation presented. We found that genetic drift cannot explain morphological diversification in the group, thus supporting the potential role of natural selection as the predominant evolutionary force during Neotamias cranial diversification, although the strength of selection varied greatly among species. This morphological diversification, in turn, was correlated with environmental conditions, suggesting a possible causal relationship. These results underscore that extant Neotamias represent a radiation in which aspects of the environment might have acted as the selective force driving species' divergence.


Assuntos
Evolução Biológica , Meio Ambiente , Sciuridae/anatomia & histologia , Seleção Genética , Animais , Canadá , Deriva Genética , Sciuridae/genética , Crânio/anatomia & histologia , Estados Unidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...